Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic Process of Phase Transition from Wurtzite to Zinc Blende Structure in InAs Nanowires

Identifieur interne : 000291 ( Chine/Analysis ); précédent : 000290; suivant : 000292

Dynamic Process of Phase Transition from Wurtzite to Zinc Blende Structure in InAs Nanowires

Auteurs : RBID : Pascal:14-0035675

Descripteurs français

English descriptors

Abstract

In situ high-resolution transmission electron microscopy revealed the precipitation of the zinc-blende (ZB) structure InAs at the liquid/solid interface or liquid/solid/amorphous carbon triple point at high temperature. Subsequent to its precipitation, detailed analysis demonstrates unique solid to solid wurtzite (WZ) to ZB phase transition through gliding of sharp steps with Shockley partial dislocations. The most intriguing phenomenon was that each step is 6 {111} atomic layers high and the step migrated without any mechanical stress applied. We believe that this is the first direct in situ observation of WZ-ZB transition in semiconductor nanowires. A model was proposed in which three Shockley partial dislocations collectively glide on every two {0001} planes (corresponds to six atomic planes in an unit). The collective glide mechanism does not need any applied shear stress.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0035675

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dynamic Process of Phase Transition from Wurtzite to Zinc Blende Structure in InAs Nanowires</title>
<author>
<name>HE ZHENG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering and Materials Science, University of Pittsburgh</s1>
<s2>Pittsburgh, Pennsylvania 15261</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAN WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Materials Science and Technology Division, MST-8, Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos, New Mexico 87545</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAN YU HUANG</name>
</author>
<author>
<name>JIANBO WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZE ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Center for Electron Microscopy, Department of Materials Science, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mao, Scott X" uniqKey="Mao S">Scott X. Mao</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering and Materials Science, University of Pittsburgh</s1>
<s2>Pittsburgh, Pennsylvania 15261</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0035675</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0035675 INIST</idno>
<idno type="RBID">Pascal:14-0035675</idno>
<idno type="wicri:Area/Main/Corpus">000211</idno>
<idno type="wicri:Area/Main/Repository">000F22</idno>
<idno type="wicri:Area/Chine/Extraction">000291</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blende structure</term>
<term>Carbon</term>
<term>Dislocation glide</term>
<term>Experimental design</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Liquid solid interface</term>
<term>Mechanical stress</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Partial dislocation</term>
<term>Phase transitions</term>
<term>Precipitation</term>
<term>Shear stress</term>
<term>Solidification front</term>
<term>Transmission electron microscopy</term>
<term>Zinc</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transition phase</term>
<term>Zinc</term>
<term>Structure blende</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Microscopie électronique transmission</term>
<term>Précipitation</term>
<term>Interface liquide solide</term>
<term>Front solidification</term>
<term>Carbone</term>
<term>Dislocation imparfaite</term>
<term>Contrainte mécanique</term>
<term>Glissement dislocation</term>
<term>Plan expérience</term>
<term>Contrainte cisaillement</term>
<term>6470N</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
<term>Carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In situ high-resolution transmission electron microscopy revealed the precipitation of the zinc-blende (ZB) structure InAs at the liquid/solid interface or liquid/solid/amorphous carbon triple point at high temperature. Subsequent to its precipitation, detailed analysis demonstrates unique solid to solid wurtzite (WZ) to ZB phase transition through gliding of sharp steps with Shockley partial dislocations. The most intriguing phenomenon was that each step is 6 {111} atomic layers high and the step migrated without any mechanical stress applied. We believe that this is the first direct in situ observation of WZ-ZB transition in semiconductor nanowires. A model was proposed in which three Shockley partial dislocations collectively glide on every two {0001} planes (corresponds to six atomic planes in an unit). The collective glide mechanism does not need any applied shear stress.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dynamic Process of Phase Transition from Wurtzite to Zinc Blende Structure in InAs Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HE ZHENG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIAN WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JIAN YU HUANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANBO WANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZE ZHANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MAO (Scott X.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering and Materials Science, University of Pittsburgh</s1>
<s2>Pittsburgh, Pennsylvania 15261</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Materials Science and Technology Division, MST-8, Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Center for Electron Microscopy, Department of Materials Science, Zhejiang University</s1>
<s2>Hangzhou 310027</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>6023-6027</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000500732540420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0035675</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In situ high-resolution transmission electron microscopy revealed the precipitation of the zinc-blende (ZB) structure InAs at the liquid/solid interface or liquid/solid/amorphous carbon triple point at high temperature. Subsequent to its precipitation, detailed analysis demonstrates unique solid to solid wurtzite (WZ) to ZB phase transition through gliding of sharp steps with Shockley partial dislocations. The most intriguing phenomenon was that each step is 6 {111} atomic layers high and the step migrated without any mechanical stress applied. We believe that this is the first direct in situ observation of WZ-ZB transition in semiconductor nanowires. A model was proposed in which three Shockley partial dislocations collectively glide on every two {0001} planes (corresponds to six atomic planes in an unit). The collective glide mechanism does not need any applied shear stress.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60D70N</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Structure blende</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Blende structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estructura blenda</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Précipitation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Precipitation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Interface liquide solide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Liquid solid interface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Interfase líquido sólido</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Front solidification</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Solidification front</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Frente solidificación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dislocation imparfaite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Partial dislocation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Dislocación imperfecta</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Contrainte mécanique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Mechanical stress</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tensión mecánica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Glissement dislocation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Dislocation glide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Deslizamiento díslocación</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Contrainte cisaillement</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Shear stress</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Tensión cizallamiento</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6470N</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000291 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000291 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0035675
   |texte=   Dynamic Process of Phase Transition from Wurtzite to Zinc Blende Structure in InAs Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024